X^2+6x-3780=0

Simple and best practice solution for X^2+6x-3780=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2+6x-3780=0 equation:



X^2+6X-3780=0
a = 1; b = 6; c = -3780;
Δ = b2-4ac
Δ = 62-4·1·(-3780)
Δ = 15156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{15156}=\sqrt{36*421}=\sqrt{36}*\sqrt{421}=6\sqrt{421}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{421}}{2*1}=\frac{-6-6\sqrt{421}}{2} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{421}}{2*1}=\frac{-6+6\sqrt{421}}{2} $

See similar equations:

| -6=k-9 | | 3-2(5-3x)=1+6(x+1) | | 36+2a=180 | | 11=b/11 | | 240=x^2 | | m²+5m-6=0 | | 2r-9/4=2r-3 | | x=176−0,8⋅20 | | t/4-7=17 | | 5(4x-3)=10(2x+1)-25 | | 12r-9/4=2r-3 | | x+1/2-x-2/5=4 | | 4-x/5+x=5-x/x+1 | | a+6+8=12 | | 7v+5=9v+37 | | 24-9x=0 | | 4/(x+1)=2/(2x-3) | | 318=150+0,75x | | 10/x=420 | | 4x-5=3x5= | | 4n+4=32-3n | | 8n–15=3n | | 50+2v=3v+5 | | 4x*4x=196 | | 2x-4(x-3)=-7+2x-1 | | 4(3x-2)=8(14)= | | 3(x+2)-7(2-3x)=8(x-3) | | 3(2x+1)=5(2x-5)= | | 10÷x=420x= | | 6/(x+1)=2/x | | 3(2x+3)=13(2x-7)= | | 2=-2x=20 |

Equations solver categories